A computational study of the inhibition mechanisms of P-glycoprotein mediated paclitaxel efflux by kinase inhibitors.

Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr, Rockville, MD, 20850, USA. Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr, Rockville, MD, 20850, USA. rsimon@nih.gov.

BMC systems biology. 2017;(1):108
Full text from:

Abstract

BACKGROUND Drug resistance mediated by P-glycoprotein (P-gp) renders many cancer therapies ineffective. One P-gp substrate is the widely used chemotherapy drug paclitaxel. Co-administration of paclitaxel and another drug that inhibits P-gp may enhance the therapeutic effectiveness of paclitaxel by preventing its efflux from tumor cells. RESULTS Here we present a computational approach that combines docking studies with mass action kinetic modeling to investigate how kinase inhibitors may inhibit P-gp mediated paclitaxel efflux. The results show that the inhibition can be attributed to competition between paclitaxel and a tyrosine kinase inhibitor (TKI) for the substrate binding domain (SBD) as well as competition between the kinase inhibitor and ATP for the nuclear (ATP) binding domain (NBD). The relative scales of these two competitions are TKI dependent and determined by the relative affinities of paclitaxel and TKIs to the SBD and NBD of P-gp, and their membrane partition coefficients. Additional simulations suggested that there is no single strategy to further improve the ability of TKIs to inhibit paclitaxel efflux and the most efficient way likely depends on the properties of the TKIs. CONCLUSIONS The developed model fits existing experimental results well and thus detailed analyses of isolated parameters provide insight into the mechanisms of rather important drug efflux. It can be used to guide how to design better TKIs or develop feasible drug combination strategies for targeting P-gp induced drug resistance.